by Daniel Shiffman. Simple rendering of the Mandelbrot set.
Original Processing.org Example: Mandelbrot
// All Examples Written by Casey Reas and Ben Fry // unless otherwise stated. // Establish a range of values on the complex plane // A different range will allow us to "zoom" in or out on the fractal // float xmin = -1.5; float ymin = -.1; float wh = 0.15; float xmin = -2.5; float ymin = -2; float wh = 4; void setup() { size(200, 200); noLoop(); } void draw() { loadPixels(); // Maximum number of iterations for each point on the complex plane int maxiterations = 200; // x goes from xmin to xmax float xmax = xmin + wh; // y goes from ymin to ymax float ymax = ymin + wh; // Calculate amount we increment x,y for each pixel float dx = (xmax - xmin) / (width); float dy = (ymax - ymin) / (height); // Start y float y = ymin; for(int j = 0; j < height; j++) { // Start x float x = xmin; for(int i = 0; i < width; i++) { // Now we test, as we iterate z = z^2 + cm does z tend towards infinity? float a = x; float b = y; int n = 0; while (n < maxiterations) { float aa = a * a; float bb = b * b; float twoab = 2.0 * a * b; a = aa - bb + x; b = twoab + y; // Infinty in our finite world is simple, let's just consider it 16 if(aa + bb > 16.0f) { break; // Bail } n++; } // We color each pixel based on how long it takes to get to infinity // If we never got there, let's pick the color black if (n == maxiterations) pixels[i+j*width] = 0; else pixels[i+j*width] = color(n*16 % 255); // Gosh, we could make fancy colors here if we wanted x += dx; } y += dy; } updatePixels(); }